Geniposide promotes autophagy to inhibit insulin resistance in HepG2 cells via P62/NF-κB/GLUT-4
نویسندگان
چکیده
Insulin resistance (IR) is known to be an important factor, which can lead to the onset of type 2 diabetes. Autophagy is a cellular process, which sequesters senescent or damaged proteins in autophagosomes for recycling of their products. Insulin and intracellular molecules, including mammalian target of rapamycin (mTOR), are well‑known inhibitors of autophagy. In patients with type 2 diabetes, the expression levels of glucose transporter 4 (GLUT‑4) in skeletal muscles are significantly decreased, indicating decreased glucose‑processing ability. Geniposide is an iridoid compound isolated from Gardenia jasminoides Ellis. Previously, it was reported that geniposide significantly promoted glucose uptake. In the present study, a HepG2 cell model of IR was constructed to determine whether geniposide can promote autophagy to inhibit insulin resistance in HepG2 cells via P62/nuclear factor (NF)‑κB/GLUT‑4. Cell proliferation was analyzed by performing an MTT assay, and the mRNA expression levels of NF‑κB and GLUT‑4 were assessed using semi‑quantitative polymerase chain reaction and immunohistochemical staining. In addition, the protein levels of GLUT‑4, P62 and phosphorylated‑P65 were assessed by western blotting. The expression of GLUT‑4 was initially increased following geniposide treatment, decreasing in time to its lowest level at 8 h. The expression levels of NF‑κB and GLUT‑4 in the IR cells treated with and without geniposide were significantly different, compared with those in the control group. Geniposide promoted autophagy in the IR HepG2 cells and significantly improved IR in the HepG2 cells, which may be associated with the dynamic regulation of the P62/NF‑κB/GLUT‑4 pathway.
منابع مشابه
p62 participates in the inhibition of NF-κB signaling and apoptosis induced by sulfasalazine in human glioma U251 cells.
Nuclear factor-κB (NF-κB) is constitutively activated in most malignant gliomas and is involved in cancer progression and drug resistance to chemotherapy. Sulfasalazine (SAS) is a classic inhibitor of NF-κB. Apoptosis and autophagy were induced by SAS accompanied by inhibition of NF-κB signaling in U251 cells. Inhibition of autophagy by 3-MA suppressed the effects of SAS on NF-κB signaling and ...
متن کاملOleanolic Acid Attenuates Insulin Resistance via NF-κB to Regulate the IRS1-GLUT4 Pathway in HepG2 Cells
The aim of our study is to elucidate the mechanisms of oleanolic acid (OA) on insulin resistance (IR) in HepG2 cells. HepG2 cells were induced with FFA as the insulin resistance model and were treated with OA. Then the glucose content and the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were analyzed. Moreover, protein expression of nuclear factor kappa B (NF-κB), insulin ...
متن کاملSelective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-κB.
The adaptor protein Bcl10 is a critically important mediator of T cell receptor (TCR)-to-NF-κB signaling. Bcl10 degradation is a poorly understood biological phenomenon suggested to reduce TCR activation of NF-κB. Here we have shown that TCR engagement triggers the degradation of Bcl10 in primary effector T cells but not in naive T cells. TCR engagement promoted K63 polyubiquitination of Bcl10,...
متن کاملBlocking Autophagy Prevents Bortezomib-Induced NF-κB Activation by Reducing I-κBα Degradation in Lymphoma Cells
Here we show that bortezomib induces effective proteasome inhibition and accumulation of poly-ubiquitinated proteins in diffuse large B-cell lymphoma (DLBCL) cells. This leads to induction of endoplasmic reticulum (ER) stress as demonstrated by accumulation of the protein CHOP, as well as autophagy, as demonstrated by accumulation of LC3-II proteins. Our data suggest that recruitment of both ub...
متن کاملp62/SQSTM1 as an oncotarget mediates cisplatin resistance through activating RIP1‐NF‐κB pathway in human ovarian cancer cells
Platinum-based therapeutic strategies have been widely used in ovarian cancer treatment. However, drug resistance has greatly limited therapeutic efficacy. Recently, tolerance to cisplatin has been attributed to other factors unrelated to DNA. p62 (also known as SQSTM1) functions as a multifunctional hub participating in tumorigenesis and may be a therapeutic target. Our previous study showed t...
متن کامل